SUGGESTED ANSWER (SA) PAPER 3 SPMRSM BIOLOGY

1 (a) KB0603 – Measuring Using Numbers

		Mark Scheme		Score
Samp	ble Answer:			
	Concentration of auxin (mgL ⁻¹)	Final height of the mu days		
	(ingL)	1	2	3
	0.01	4.4/4.5/4.6	4.7/4.8/4.0	a second
	0.05	5.1/5.2/5.3	5.4/5.5/5.6	a second
	0.07	6.7/6.8/6.9	6.5/6.6/6.7	

1.

1 (b) [KB0602 – Classifying]

Mark scheme			
Sample answer			
Material	Apparatus		
Mustard shoot	Ruler		
Soil	Pot	3	
Auxin solution			
Water			

(c) (i) [KB0601 - Observation]

Explanation	Score
Sample answer: 1. When the concentration of auxin solution is 0.01 mgL ⁻¹ , the final height of	
mustard shoot after six days are 4.5 cm for shoot 1 and 4.8 cm for shoot 2 (respectively).	
2. When the concentration of auxin solution is 0.07 mgL ⁻¹ , the final height of mustard shoot after six days are 6.8 cm for shoot 1 and 6.6 cm for shoot 2 (respectively).	3

1 (c) (ii) [KB0604 – Making inference]

Explanation	Score
Sample answers:	
 Inference from observation 1: When the concentration of auxin solution is the lowest, the final height of mustard shoot after six days is the lowest because less auxin promote / stimulate less cell elongation, the growth rate of shoot become less / lower / lowest. When the concentration of auxin solution is highest, the final height of mustard shoot after six days is the highest because more auxin promote/stimulate more cell elongation, the growth rate of shoot become more / higher / highest. 	3

	Explanation	Score
Sample Answer :	3. <i>I</i> F	
Variables	Method to handle the variable correctly	
Manipulated variable: Concentration of auxin solution	Use/ Spray <u>different</u> concentration of auxin solution which are 0.01 mgL ⁻¹ .,0.05 mgL ⁻¹ and 0.07 mgL ⁻¹	
<u>Responding variable</u> : Final height of mustard shoot after six days //	Measure and record the final height of mustard shoot after six days by using ruler //	
Difference in height of mustard shoot after six days //	Calculate and record the difference in height by using formula : Different in height = Final height - Initial height	3
Average height //	Calculate and record the average height by using a formula Final height 1+ Final height 2 // 2	
Growth rate	Calculate and record growth rate of mustard shoot by using formula: Growth rate =	
	Difference in height of mustard shoot	
	Time	
<u>Constant variable</u> : Types of shoot / plant //	Use/ fix the same type of shoot / plant that is mustard //	
Volume of auxin solution //	Use the same volume of auxin solution that is	

1 (d) [KB0610 – Controlling Variables]

	2 ml. //	
Volume of water //	Use the same volume of water //	
Types of soil	Use the same type of soil	

1 (e) [KB0611 – Making Hypothesis]

Mark scheme	Score
Sample answers :	NEDING CON
1. The higher/lower the concentration of auxin solution, the higher/lower the final height of mustard shoot / growth rate/ difference in height/average height	3

1 (f) (i) [KB0606 – Communication]

Mark scheme						Score	
Sample answers	:						
Concentration of auxin solution	a construction of the second sec	-		e mustard ays (cm)	Difference in height of the mustard shoot	Growth rate	
(mgL ⁻¹)) Initial Final Average	after six days (cm)	(cm/day)				
0.01	4.0	4.5	4.8	4.65	0.65	0.11	3
0.05	4.0	5.2	5.5	5.35	1.35	0.23	
0.07	4.0	6.8	6.6	6.70	2.70	0.45	
*final height m * growth rate n				-]	

1 (f)(ii) [KB0608 – Space and time relationship]

Criteria	Score
Both axes are labelled in uniform scale	
All points are plotted correctly	-
 smooth / curve line and joint all the points (No extrapolation; not more than 3 small squares) 	3

(g) [KB0607 – Interpreting Data]

Criteria	Score
 <u>Sample answer</u>: 1. When the concentration of auxin increases, the growth rate of mustard shoot increases. More auxin in solution promote/stimulate more cell elongation so that final height increases. 	

1 (h) [KB0609 – Define operationally]

Explanation	Score
 <u>Sample answers</u>: 1. Growth is the process of cell elongation /increase in height of mustard shoot which is shown by the final height of mustard shoot after six days and affected 	
by (different) concentration of auxin solution.	

1 (i) [KB0605 –Predicting]

Mark scheme	Score
Sample answer 1:	
 The mustard shoot remain straight, because no cell elongation occur/ growth rate constant due to 	
 auxin cannot diffuse to the zone of elongation through glass slip. 	
Sample answer 2:	3
 Shoot bend towards light source/ to the right 	
• Glass slip has no effect on the diffusion of auxin// glass slip not at cell division zone/ elongation zone/ cell differentiation zone P3	
• Concentration of auxin at the shaded region is higher// cell elongation at the shaded region is faster// growth rate at shaded region is higher.	

Question 2

No.	Mark Scheme	Score
2(i)	Sample answers :	
	1. Does different pH (value) affect the rate of trypsin reaction?	3
	2. What is the effect of different pH on the rate of trypsin reaction?	

No.	Mark Scheme	Score
2(ii)	Sample answers :	
	 1.In pH 9/7/2, the rate of trypsin reaction is the highest/lowest. 2.In pH 2/9 the rate of trypsin reaction is lower/higher than pH 7 and pH 9/7 and pH 2. 3.The rate of trypsin reaction in (medium of) pH9/ alkaline is the highest 	3

No.	Mark Scheme	Score
2(iii)	Sample answers :	
	 Manipulated Variables: pH of solution 	3
	• Responding variables : Rate of trypsin reaction	
	• Constant variables : Concentration of trypsin // Temperature of water bath/ surrounding // Volume of albumen suspension	

2(iv)	Sample answers :	
	A) For Experiment Albumen	
	Apparatus :	3
	Beakers, a tripod stand, thermometer / (water bath), test tubes, 5 ml syringe, pH paper, a wire gauze, a Bunsen burner, stopwatch, dropper, forceps	3
	Materials : * Albumen suspension, * 1 % trypsin, * 0.1 M hydrochloric acid, * 0.1 M	
	sodium hydroxide solution ,distilled water	
	* Bunsen burner + tripod stand + wire gauze + distilled water + beaker or Waterbath = 1 Apparatus	
	B) For Experiment cowhide leather	
	Apparatus:	
	Beakers, a tripod stand, thermometer / (water bath), test tubes, 5 ml syringe,	
	pH paper, a wire gauze, a Bunsen burner, stopwatch, dropper, forceps	
	Materials:	
	Pieces of cowhide leather, 1% trypsin, 0.1 M vinegar, lime powder, (distilled) water	
	*NOTE : Reject if student use hydrogen Peroxide Experiment.	

Mark Scheme	K's	
Sample answer :		
A) Experiment Albumen		
1. Prepare an albumen suspension (by mixing egg white with	K1	
500 ml of distilled water).		
2. Boil_the suspension and leave it to cool.	K1, K5	
3. Discard large particles.	K5	
4. Label three test tube X,Y and Z.	K1	
5. Put 5 ml of albumen into each test tube using a syringe.	K1	
6. Add_the following solutions into each test tube.	K1	
X : 1 ml of 0.1 M hydrochloric acid + 1 ml of 1 % trypsin solution	K4	
Y : 1 ml of distilled water + 1 ml of 1 % trypsin solution		
Z : 1 ml of 0.1 M sodium hydroxide + 1 ml of 1 % trypsin solution		
7. Dip a piece of pH paper into each test tube and record the pH value	K1	
8. Immerse all the test tube in the water bath where the temperature maintain at 37 °C.	K1, K2	
9. Leave the test tubes for 20 minutes.	K1	
 Observe the conditions/cloudiness of the mixture at the beginning of the experiment. 	K1	
11. After 20 minutes, observe and record the conditions /	K2, K3	
cloudiness of the mixture.	(ORV)	
12. Record all data in table / Tabulate the data.	K1	
13. Repeat the experiment twice to get average reading.	K5	
B) Experiment Cowhide		
1. Prepare a piece of cowhide.	K1	
2. Label three beakers X, Y and Z.	K1	
3. Put the following solutions into each beaker.	K1	
X : 1 ml of 0.1 M vinegar + 1 ml of 1 % trypsin	K4	
Solution + 1ml of distilled water		
Y: 1 ml of distilled water $+ 1$ ml of 1 % trypsin solution		
Z: lime powder +1 ml of 1 % trypsin +1ml distilled water		
4. Soak a piece of cowhide into each beaker.	K1	
5. Dip a piece of pH paper into each beaker and record the pH value.	K1	
6. Immerse all beakers in the water bath where the temperature	K1	
is maintained at 37 °C.	K2	
7. Leave the beakers for 20 minutes.		
8. Record all data in table / Tabulate the data.	K1	
9. Repeat experiment twice to get average reading	K5	
* Reject K3		
*NOTE : Reject if student use hydrogen Peroxide Experiment		
9. * Rejeo	Repeat experiment twice to get average reading	Repeat experiment twice to get average reading K5 ct K3 Image: K3

No.			Mark Scheme		Score
2(vi)	Sample answ	wer			2
			Condition of the	e mixture	
		pH value	At the beginning of the experiment	After 20 minutes	
		2			
		7			
		9			
	E Contraction of the second seco				
		pH value	Time taken for the mixture/sample to turn clear (minute)	Rate of enzyme reaction (minute ⁻¹)	
		value 2	mixture/sample to turn		
		value 2 7	mixture/sample to turn		
		value 2	mixture/sample to turn		

PERATURAN PEMARKAHAN TAMAT